
blackduck.com | 1

Overview
According to the AUTOSAR website, “The AUTOSAR partnership is an alliance of
OEM manufacturers, Tier 1 automotive suppliers, semiconductor manufacturers,
software suppliers, tool suppliers and others. Considering the different automotive E/E
architectures in the current and future markets, the partnership established a de-facto
open industry standard for an automotive software architecture. It will serve as a
basic infrastructure for the management of functions within both future applications
and standard software modules.” The AUTOSAR standards are used in safety-critical
industries, such as automotive, with emerging applications in highly automated driving
and new connected automotive software systems.

Coverity® Static Analysis supports the AUTOSAR Adaptive Platform 19.03 by providing
checkers for statically verifiable rules of this standard.

Table 1

Category Supported Unsupported All Percent
coverage

Required 334 29 363 92%
Advisory 29 5 34 85%
All 363 34 397 91%

Table 2

Automation type Supported Unsupported All Percent
coverage

Automated 327 2 329 99%
Partially automated 22 0 22 100%
Non-automated 14 32 46 30%

All 363 34 397 91%

Automation type definitions
Automated: These are rules that are automatically enforceable by means of static
analysis.

Partially automated: These are the rules that can be supported by static code analysis,
e.g. by heuristic or by covering some error scenarios, as a support for a manual code
review.

Non-automated: These are the rules where the static analysis cannot provide any
reasonable support by a static code analysis and they require other means, e.g. manual
code review or other tools.

Ensure the safety,
reliability, and security
of software written in
C++14

Coverity Support for
AUTOSAR Coding Standards

AUTOSAR 19.03
The AUTOSAR R19-03 standard
provides guidelines for the use of
the C++14 language in critical and
safety-related systems. Tables 1 and
2 show Coverity coverage of these
rules (both required and advisory).
Not all rules are supported, as some
are not statically verifiable.

Source: AUTOSAR AP Release 19-03,
Document No 839

https://www.blackduck.com
https://www.autosar.org/about/history/
https://www.blackduck.com/static-analysis-tools-sast/coverity.html
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_RS_CPP14Guidelines.pdf

blackduck.com | 2

Rule Description Automation type Category Supported
A0-1-1 A project shall not contain instances of non-volatile variables being

given values that are not subsequently used.
Automated Required Yes

A0-1-2 The value returned by a function having a non-void return type that is
not an overloaded operator shall be used.

Automated Required Yes

A0-1-3 Every function defined in an anonymous namespace, or static
function with internal linkage, or private member function shall be
used.

Automated Required Yes

A0-1-4 There shall be no unused named parameters in non-virtual functions. Automated Required Yes
A0-1-5 There shall be no unused named parameters in the set of

parameters for a virtual function and all the functions that override it.
Automated Required Yes

A0-1-6 There should be no unused type declarations. Automated Advisory Yes
A0-4-1 Floating-point implementation shall comply with IEEE 754 standard. Non-automated Required No
A0-4-2 Type long double shall not be used. Automated Required Yes
A0-4-3 The implementations in the chosen compiler shall strictly comply

with the C++14 Language Standard.
Automated Required No

A0-4-4 Range, domain and pole errors shall be checked when using math
functions.

Partially automated Required Yes

A1-1-1 All code shall conform to ISO/IEC 14882:2014 - Programming
Language C++ and shall not use deprecated features.

Automated Required Yes

A1-1-2 A warning level of the compilation process shall be set in compliance
with project policies.

Non-automated Required No

A1-1-3 An optimization option that disregards strict standard compliance
shall not be turned on in the chosen compiler.

Non-automated Required No

A1-2-1 When using a compiler toolchain (including preprocessor, compiler
itself, linker, C++ standard libraries) in safety-related software, the
tool confidence level (TCL) shall be determined. In case of TCL2 or
TCL3, the compiler shall undergo a “Qualification of a software tool”,
as per ISO 26262-8.11.4.6 [6].

Non-automated Required No

A1-4-1 Code metrics and their valid boundaries shall be defined and code
shall comply with defined boundaries of code metrics.

Non-automated Required No

A1-4-3 All code should compile free of compiler warnings. Automated Advisory No
A2-3-1 Only those characters specified in the C++ Language Standard basic

source character set shall be used in the source code.
Automated Required Yes

A2-5-1 Trigraphs shall not be used. Automated Required Yes
A2-5-2 Digraphs shall not be used. Automated Required Yes
A2-7-1 The character \ shall not occur as a last character of a C++

comment.
Automated Required Yes

A2-7-2 Sections of code shall not be “commented out”. Non-automated Required Yes
A2-7-3 All declarations of “user-defined” types, static and non-static

data members, functions and methods shall be preceded by
documentation.

Automated Required Yes

A2-7-5 Comments shall not document any actions or sources (e.g. tables,
figures, paragraphs, etc.) that are outside of the file.

Non-automated Required No

A2-8-1 A header file name should reflect the logical entity for which it
provides declarations.

Non-automated Required No

A2-8-2 An implementation file name should reflect the logical entity for
which it provides definitions.

Non-automated Advisory No

https://www.blackduck.com

blackduck.com | 3

Rule Description Automation type Category Supported
A2-10-1 An identifier declared in an inner scope shall not hide an identifier

declared in an outer scope.
Automated Required Yes

A2-10-4 The identifier name of a non-member object with static storage
duration or static function shall not be reused within a namespace.

Automated Required Yes

A2-10-5 An identifier name of a function with static storage duration or a non-
member object with external or internal linkage should not be reused.

Automated Advisory Yes

A2-10-6 A class or enumeration name shall not be hidden by a variable,
function or enumerator declaration in the same scope.

Automated Required Yes

A2-11-1 Volatile keyword shall not be used. Automated Required Yes
A2-13-1 Only those escape sequences that are defined in ISO/IEC

14882:2014 shall be used.
Automated Required Yes

A2-13-2 String literals with different encoding prefixes shall not be
concatenated.

Automated Required Yes

A2-13-3 Type wchar_t shall not be used. Automated Required Yes
A2-13-4 String literals shall not be assigned to non-constant pointers. Automated Required Yes
A2-13-5 Hexadecimal constants should be upper case. Automated Advisory Yes
A2-13-6 Universal character names shall be used only inside character or

string literals.
Automated Required Yes

A3-1-1 It shall be possible to include any header file in multiple translation
units without violating the One Definition Rule.

Automated Required Yes

A3-1-2 Header files, that are defined locally in the project, shall have a file
name extension of one of: “.h”, “.hpp” or “.hxx”.

Automated Required Yes

A3-1-3 Implementation files, that are defined locally in the project, should
have a file name extension of “.cpp”.

Automated Advisory Yes

A3-1-4 When an array with external linkage is declared, its size shall be
stated explicitly.

Automated Required Yes

A3-1-5 A function definition shall only be placed in a class definition if (1)
the function is intended to be inlined (2) it is a member function
template (3) it is a member function of a class template.

Partially automated Required Yes

A3-1-6 Trivial accessor and mutator functions should be inlined. Automated Advisory Yes
A3-3-1 Objects or functions with external linkage (including members of

named namespaces) shall be declared in a header file.
Automated Required Yes

A3-3-2 Static and thread-local objects shall be constant-initialized. Automated Required Yes
A3-8-1 An object shall not be accessed outside of its lifetime. Non-automated Required Yes
A3-9-1 Fixed width integer types from <cstdint>, indicating the size and

signedness, shall be used in place of the basic numerical types.
Automated Required Yes

A4-5-1 Expressions with type enum or enum class shall not be used
as operands to built-in and overloaded operators other than the
subscript operator [], the assignment operator =, the equality
operators == and !=, the unary & operator, and the relational
operators <, <=, >, >=.

Automated Required Yes

A4-7-1 An integer expression shall not lead to data loss. Automated Required Yes
A4-10-1 Only nullptr literal shall be used as the null-pointer-constant. Automated Required Yes
A5-0-1 The value of an expression shall be the same under any order of

evaluation that the standard permits.
Automated Required Yes

A5-0-2 The condition of an if-statement and the condition of an iteration
statement shall have type bool.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 4

Rule Description Automation type Category Supported
A5-0-3 The declaration of objects shall contain no more than two levels of

pointer indirection.
Automated Required Yes

A5-0-4 Pointer arithmetic shall not be used with pointers to non-final
classes.

Automated Required Yes

A5-1-1 Literal values shall not be used apart from type initialization,
otherwise symbolic names shall be used instead.

Partially automated Required Yes

A5-1-2 Variables shall not be implicitly captured in a lambda expression. Automated Required Yes
A5-1-3 Parameter list (possibly empty) shall be included in every lambda

expression.
Automated Required Yes

A5-1-4 A lambda expression object shall not outlive any of its reference-
captured objects.

Automated Required Yes

A5-1-6 Return type of a non-void return type lambda expression should be
explicitly specified.

Automated Advisory Yes

A5-1-7 A lambda shall not be an operand to decltype or typeid. Automated Required Yes
A5-1-8 Lambda expressions should not be defined inside another lambda

expression.
Automated Advisory Yes

A5-1-9 Identical unnamed lambda expressions shall be replaced with a
named function or a named lambda expression.

Automated Advisory Yes

A5-2-1 Dynamic_cast should not be used. Automated Advisory Yes
A5-2-2 Traditional C-style casts shall not be used. Automated Required Yes
A5-2-3 A cast shall not remove any const or volatile qualification from the

type of a pointer or reference.
Automated Required Yes

A5-2-4 reinterpret_cast shall not be used. Automated Required Yes
A5-2-5 An array or container shall not be accessed beyond its range. Automated Required Yes
A5-2-6 The operands of a logical && or || shall be parenthesized if the

operands contain binary operators.
Automated Required Yes

A5-3-1 Evaluation of the operand to the typeid operator shall not contain
side effects.

Non-automated Required Yes

A5-3-2 Null pointers shall not be dereferenced. Partially automated Required Yes
A5-3-3 Pointers to incomplete class types shall not be deleted. Automated Required Yes
A5-5-1 A pointer to member shall not access non-existent class members. Automated Required Yes
A5-6-1 The right hand operand of the integer division or remainder operators

shall not be equal to zero.
Automated Required Yes

A5-10-1 A pointer to member virtual function shall only be tested for equality
with null-pointer-constant.

Automated Required Yes

A5-16-1 The ternary conditional operator shall not be used as a sub-
expression.

Automated Required Yes

A6-2-1 Move and copy assignment operators shall either move or
respectively copy base classes and data members of a class,
without any side effects.

Automated Required Yes

A6-2-2 Expression statements shall not be explicit calls to constructors of
temporary objects only.

Automated Required Yes

A6-4-1 A switch statement shall have at least two case-clauses, distinct
from the default label.

Automated Required Yes

A6-5-1 A for-loop that loops through all elements of the container and does
not use its loop-counter shall not be used.

Automated Required Yes

A6-5-2 A for loop shall contain a single loop-counter which shall not have
floating-point type.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 5

Rule Description Automation type Category Supported
A6-5-3 Do statements should not be used. Automated Advisory Yes
A6-5-4 For-init-statement and expression should not perform actions other

than loop-counter initialization and modification.
Automated Advisory Yes

A6-6-1 The goto statement shall not be used. Automated Required Yes
A7-1-1 Constexpr or const specifiers shall be used for immutable data

declaration.
Automated Required Yes

A7-1-2 The constexpr specifier shall be used for values that can be
determined at compile time.

Automated Required Yes

A7-1-3 CV-qualifiers shall be placed on the right hand side of the type that is
a typedef or a using name.

Automated Required Yes

A7-1-4 The register keyword shall not be used. Automated Required Yes
A7-1-5 The auto specifier shall not be used apart from following cases:

(1) to declare that a variable has the same type as return type of
a function call, (2) to declare that a variable has the same type as
initializer of non-fundamental type, (3) to declare parameters of a
generic lambda expression, (4) to declare a function template using
trailing return type syntax.

Automated Required Yes

A7-1-6 The typedef specifier shall not be used. Automated Required Yes
A7-1-7 Each expression statement and identifier declaration shall be placed

on a separate line.
Automated Required Yes

A7-1-8 A non-type specifier shall be placed before a type specifier in a
declaration.

Automated Required Yes

A7-1-9 A class, structure, or enumeration shall not be declared in the
definition of its type.

Automated Required Yes

A7-2-1 An expression with enum underlying type shall only have values
corresponding to the enumerators of the enumeration.

Automated Required Yes

A7-2-2 Enumeration underlying base type shall be explicitly defined. Automated Required Yes
A7-2-3 Enumerations shall be declared as scoped enum classes. Automated Required Yes
A7-2-4 In an enumeration, either (1) none, (2) the first or (3) all enumerators

shall be initialized.
Automated Required Yes

A7-2-5 Enumerations should be used to represent sets of related named
constants.

Non-automated Advisory No

A7-3-1 All overloads of a function shall be visible from where it is called. Automated Required Yes
A7-4-1 The asm declaration shall not be used. Automated Required Yes
A7-5-1 A function shall not return a reference or a pointer to a parameter

that is passed by reference to const.
Automated Required Yes

A7-5-2 Functions shall not call themselves, either directly or indirectly. Automated Required Yes
A7-6-1 Functions declared with the [[noreturn]] attribute shall not return. Automated Required Yes
A8-2-1 When declaring function templates, the trailing return type syntax

shall be used if the return type depends on the type of parameters.
Automated Required Yes

A8-4-1 Functions shall not be defined using the ellipsis notation. Automated Required Yes
A8-4-2 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression.
Automated Required Yes

A8-4-3 Common ways of passing parameters should be used. Non-automated Advisory No
A8-4-4 Multiple output values from a function should be returned as a struct

or tuple.
Automated Advisory Yes

A8-4-5 “consume” parameters declared as X && shall always be moved from. Automated Required Yes

https://www.blackduck.com

blackduck.com | 6

Rule Description Automation type Category Supported
A8-4-6 “forward” parameters declared as T && shall always be forwarded. Automated Required Yes
A8-4-7 “in” parameters for “cheap to copy” types shall be passed by value. Automated Required Yes
A8-4-8 Output parameters shall not be used. Automated Required Yes
A8-4-9 “in-out” parameters declared as T & shall be modified. Automated Required Yes
A8-4-10 A parameter shall be passed by reference if it can’t be NULL. Automated Required Yes
A8-4-11 A smart pointer shall only be used as a parameter type if it expresses

lifetime semantics.
Automated Required Yes

A8-4-12 A std::unique_ptr shall be passed to a function as: (1) a copy to
express the function assumes ownership (2) an lvalue reference to
express that the function replaces the managed object.

Automated Required Yes

A8-4-13 A std::shared_ptr shall be passed to a function as: (1) a copy to
express the function shares ownership (2) an lvalue reference to
express that the function replaces the managed object (3) a const
lvalue reference to express that the function retains a reference
count.

Automated Required Yes

A8-4-14 Interfaces shall be precisely and strongly typed. Non-automated Required No
A8-5-0 All memory shall be initialized before it is read. Automated Required Yes
A8-5-1 In an initialization list, the order of initialization shall be following: (1)

virtual base classes in depth and left to right order of the inheritance
graph, (2) direct base classes in left to right order of inheritance list,
(3) non-static data members in the order they were declared in the
class definition.

Automated Required Yes

A8-5-2 Braced-initialization {}, without equals sign, shall be used for variable
initialization.

Automated Required Yes

A8-5-3 A variable of type auto shall not be initialized using {} or ={} braced-
initialization.

Automated Required Yes

A8-5-4 If a class has a user-declared constructor that takes a parameter
of type std::initializer_list, then it shall be the only constructor apart
from special member function constructors.

Automated Advisory Yes

A9-3-1 Member functions shall not return non-const “raw” pointers or
references to private or protected data owned by the class.

Partially automated Required Yes

A9-5-1 Unions shall not be used. Automated Required Yes
A9-6-1 Data types used for interfacing with hardware or conforming to

communication protocols shall be trivial, standard-layout and only
contain members of types with defined sizes.

Partially automated Required Yes

A9-6-2 Bit-fields shall be used only when interfacing to hardware or
conforming to communication protocols.

Non-automated Required No

A10-0-1 Public inheritance shall be used to implement “is-a” relationship. Non-automated Required No
A10-0-2 Membership or non-public inheritance shall be used to implement

“has-a” relationship.
Non-automated Required No

A10-1-1 Class shall not be derived from more than one base class which is
not an interface class.

Automated Required Yes

A10-2-1 Non-virtual public or protected member functions shall not be
redefined in derived classes.

Automated Required Yes

A10-3-1 Virtual function declaration shall contain exactly one of the three
specifiers: (1) virtual, (2) override, (3) final.

Automated Required Yes

A10-3-2 Each overriding virtual function shall be declared with the override or
final specifier.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 7

Rule Description Automation type Category Supported
A10-3-3 Virtual functions shall not be introduced in a final class. Automated Required Yes
A10-3-5 A user-defined assignment operator shall not be virtual. Automated Required Yes
A10-4-1 Hierarchies should be based on interface classes. Non-automated Advisory No
A11-0-1 A non-POD type should be defined as class. Automated Advisory Yes
A11-0-2 A type defined as struct shall: (1) provide only public data members,

(2) not provide any special member functions or methods, (3) not be
a base of another struct or class, (4) not inherit from another struct
or class.

Automated Required Yes

A11-3-1 Friend declarations shall not be used. Automated Required Yes
A12-0-1 If a class declares a copy or move operation, or a destructor, either

via “=default”, “=delete”, or via a user-provided declaration, then all
others of these five special member functions shall be declared as
well.

Automated Required Yes

A12-0-2 Bitwise operations and operations that assume data representation
in memory shall not be performed on objects.

Partially automated Required Yes

A12-1-1 Constructors shall explicitly initialize all virtual base classes, all direct
non-virtual base classes and all non-static data members.

Automated Required Yes

A12-1-2 Both NSDMI and a non-static member initializer in a constructor
shall not be used in the same type.

Automated Required Yes

A12-1-3 If all user-defined constructors of a class initialize data members
with constant values that are the same across all constructors, then
data members shall be initialized using NSDMI instead.

Automated Required Yes

A12-1-4 All constructors that are callable with a single argument of
fundamental type shall be declared explicit.

Automated Required Yes

A12-1-5 Common class initialization for non-constant members shall be
done by a delegating constructor.

Partially automated Required Yes

A12-1-6 Derived classes that do not need further explicit initialization and
require all the constructors from the base class shall use inheriting
constructors.

Automated Required Yes

A12-4-1 Destructor of a base class shall be public virtual, public override or
protected non-virtual.

Automated Required Yes

A12-4-2 If a public destructor of a class is non-virtual, then the class should
be declared final.

Automated Advisory Yes

A12-6-1 All class data members that are initialized by the constructor shall be
initialized using member initializers.

Automated Required Yes

A12-7-1 If the behavior of a user-defined special member function is identical
to implicitly defined special member function, then it shall be defined

“=default” or be left undefined.

Automated Required Yes

A12-8-1 Move and copy constructors shall move and respectively copy base
classes and data members of a class, without any side effects.

Automated Required Yes

A12-8-2 User-defined copy and move assignment operators should use user-
defined no-throw swap function.

Automated Advisory Yes

A12-8-3 Moved-from object shall not be read-accessed. Partially automated Required Yes
A12-8-4 Move constructor shall not initialize its class members and base

classes using copy semantics.
Automated Required Yes

A12-8-5 A copy assignment and a move assignment operators shall handle
self-assignment.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 8

Rule Description Automation type Category Supported
A12-8-6 Copy and move constructors and copy assignment and move

assignment operators shall be declared protected or defined
“=delete” in base class.

Automated Required Yes

A12-8-7 Assignment operators should be declared with the ref-qualifier &. Automated Advisory Yes
A13-1-2 User defined suffixes of the user defined literal operators shall start

with underscore followed by one or more letters.
Automated Required Yes

A13-1-3 User defined literals operators shall only perform conversion of
passed parameters.

Automated Required Yes

A13-2-1 An assignment operator shall return a reference to “this”. Automated Required Yes
A13-2-2 A binary arithmetic operator and a bitwise operator shall return a

“prvalue”.
Automated Required Yes

A13-2-3 A relational operator shall return a boolean value. Automated Required Yes
A13-3-1 A function that contains “forwarding reference” as its argument shall

not be overloaded.
Automated Required Yes

A13-5-1 If “operator[]” is to be overloaded with a non-const version, const
version shall also be implemented.

Automated Required Yes

A13-5-2 All user-defined conversion operators shall be defined explicit. Automated Required Yes
A13-5-3 User-defined conversion operators should not be used. Automated Advisory Yes
A13-5-4 If two opposite operators are defined, one shall be defined in terms

of the other.
Automated Required Yes

A13-5-5 Comparison operators shall be non-member functions with identical
parameter types and noexcept.

Automated Required Yes

A13-6-1 Digit sequences separators ‘ shall only be used as follows: (1) for
decimal, every 3 digits, (2) for hexadecimal, every 2 digits, (3) for
binary, every 4 digits.

Automated Required Yes

A14-1-1 A template should check if a specific template argument is suitable
for this template.

Non-automated Advisory Yes

A14-5-1 A template constructor shall not participate in overload resolution for
a single argument of the enclosing class type.

Automated Required Yes

A14-5-2 Class members that are not dependent on template class
parameters should be defined in a separate base class.

Partially automated Advisory Yes

A14-5-3 A non-member generic operator shall only be declared in a
namespace that does not contain class (struct) type, enum type or
union type declarations.

Automated Advisory Yes

A14-7-1 A type used as a template argument shall provide all members that
are used by the template.

Automated Required Yes

A14-7-2 Template specialization shall be declared in the same file (1) as
the primary template (2) as a user-defined type, for which the
specialization is declared.

Automated Required Yes

A14-8-2 Explicit specializations of function templates shall not be used. Automated Required Yes
A15-0-1 A function shall not exit with an exception if it is able to complete its

task.
Non-automated Required No

A15-0-2 At least the basic guarantee for exception safety shall be provided for
all operations. In addition, each function may offer either the strong
guarantee or the nothrow guarantee.

Partially automated Required Yes

A15-0-3 Exception safety guarantee of a called function shall be considered. Non-automated Required Yes
A15-0-4 Unchecked exceptions shall be used to represent errors from which

the caller cannot reasonably be expected to recover.
Non-automated Required No

https://www.blackduck.com

blackduck.com | 9

Rule Description Automation type Category Supported
A15-0-5 Checked exceptions shall be used to represent errors from which the

caller can reasonably be expected to recover.
Non-automated Required No

A15-0-6 An analysis shall be performed to analyze the failure modes of
exception handling. In particular, the following failure modes shall
be analyzed: (a) worst time execution time not existing or cannot
be determined, (b) stack not correctly unwound, (c) exception not
thrown, other exception thrown, wrong catch activated, (d) memory
not available while exception handling.

Non-automated Required No

A15-0-7 Exception handling mechanism shall guarantee a deterministic
worst-case time execution time.

Partially automated Required Yes

A15-0-8 A worst-case execution time (WCET) analysis shall be performed
to determine maximum execution time constraints of the software,
covering in particular the exceptions processing.

Non-automated Required No

A15-1-1 Only instances of types derived from std::exception should be
thrown.

Automated Advisory Yes

A15-1-2 An exception object shall not be a pointer. Automated Required Yes
A15-1-3 All thrown exceptions should be unique. Automated Advisory Yes
A15-1-4 If a function exits with an exception, then before a throw, the function

shall place all objects/resources that the function constructed in
valid states or it shall delete them.

Partially automated Required Yes

A15-1-5 Exceptions shall not be thrown across execution boundaries. Non-automated Required Yes
A15-2-1 Constructors that are not noexcept shall not be invoked before

program startup.
Automated Required Yes

A15-2-2 If a constructor is not noexcept and the constructor cannot finish
object initialization, then it shall deallocate the object’s resources
and it shall throw an exception.

Partially automated Required Yes

A15-3-2 If a function throws an exception, it shall be handled when
meaningful actions can be taken, otherwise it shall be propagated.

Non-automated Required No

A15-3-3 Main function and a task main function shall catch at least: base
class exceptions from all third-party libraries used, std::exception
and all otherwise unhandled exceptions.

Partially automated Required Yes

A15-3-4 Catch-all (ellipsis and std::exception) handlers shall be used only in
(a) main, (b) task main functions, (c) in functions that are supposed
to isolate independent components and (d) when calling third-
party code that uses exceptions not according to AUTOSAR C++14
guidelines.

Non-automated Required Yes

A15-3-5 A class type exception shall be caught by reference or const
reference.

Automated Required Yes

A15-4-1 Dynamic exception-specification shall not be used. Automated Required Yes
A15-4-2 If a function is declared to be noexcept, noexcept(true) or

noexcept(<true condition>), then it shall not exit with an exception.
Automated Required Yes

A15-4-3 The noexcept specification of a function shall either be identical
across all translation units, or identical or more restrictive between a
virtual member function and an overrider.

Automated Required Yes

A15-4-4 A declaration of non-throwing function shall contain noexcept
specification.

Automated Required Yes

A15-4-5 Checked exceptions that could be thrown from a function shall be
specified together with the function declaration and they shall be
identical in all function declarations and for all its overriders.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 10

Rule Description Automation type Category Supported
A15-5-1 All user-provided class destructors, deallocation functions, move

constructors, move assignment operators and swap functions shall
not exit with an exception. A noexcept exception specification shall
be added to these functions as appropriate.

Automated Required Yes

A15-5-2 Program shall not be abruptly terminated. In particular, an implicit
or explicit invocation of std::abort(), std::quick_exit(), std::_Exit(),
std::terminate() shall not be done.

Partially automated Required Yes

A15-5-3 The std::terminate() function shall not be called implicitly. Automated Required Yes
A16-0-1 The pre-processor shall only be used for unconditional and

conditional file inclusion and include guards, and using the following
directives: (1) #ifndef, (2) #ifdef, (3) #if, (4) #if defined, (5) #elif, (6)
#else, (7) #define, (8) #endif, (9) #include.

Automated Required Yes

A16-2-1 The ‘, “, /*, //, \ characters shall not occur in a header file name or in
#include directive.

Automated Required Yes

A16-2-2 There shall be no unused include directives. Automated Required Yes
A16-2-3 An include directive shall be added explicitly for every symbol used

in a file.
Non-automated Required Yes

A16-6-1 #error directive shall not be used. Automated Required Yes
A16-7-1 The #pragma directive shall not be used. Automated Required Yes
A17-0-1 Reserved identifiers, macros and functions in the C++ standard

library shall not be defined, redefined or undefined.
Automated Required Yes

A17-0-2 All project’s code including used libraries (including standard and
user-defined libraries) and any third-party user code shall conform to
the AUTOSAR C++14 Coding Guidelines.

Non-automated Required No

A17-1-1 Use of the C Standard Library shall be encapsulated and isolated. Non-automated Required Yes
A17-6-1 Non-standard entities shall not be added to standard namespaces. Automated Required Yes
A18-0-1 The C library facilities shall only be accessed through C++ library

headers.
Automated Required Yes

A18-0-2 The error state of a conversion from string to a numeric value shall
be checked.

Automated Required Yes

A18-0-3 The library <clocale> (locale.h) and the setlocale function shall not be
used.

Automated Required Yes

A18-1-1 C-style arrays shall not be used. Automated Required Yes
A18-1-2 The std::vector<bool> specialization shall not be used. Automated Required Yes
A18-1-3 The std::auto_ptr type shall not be used. Automated Required Yes
A18-1-4 A pointer pointing to an element of an array of objects shall not be

passed to a smart pointer of single object type.
Automated Required Yes

A18-1-6 All std::hash specializations for user-defined types shall have a
noexcept function call operator.

Automated Required Yes

A18-5-1 Functions malloc, calloc, realloc and free shall not be used. Automated Required Yes
A18-5-2 Non-placement new or delete expressions shall not be used. Partially automated Required Yes
A18-5-3 The form of the delete expression shall match the form of the new

expression used to allocate the memory.
Automated Required Yes

A18-5-4 If a project has sized or unsized version of operator “delete” globally
defined, then both sized and unsized versions shall be defined.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 11

Rule Description Automation type Category Supported
A18-5-5 Memory management functions shall ensure the following: (a)

deterministic behavior resulting with the existence of worst-case
execution time, (b) avoiding memory fragmentation, (c) avoid
running out of memory, (d) avoiding mismatched allocations or
deallocations, (e) no dependence on non-deterministic calls to kernel.

Partially automated Required Yes

A18-5-6 An analysis shall be performed to analyze the failure modes of
dynamic memory management. In particular, the following failure
modes shall be analyzed: (a) non-deterministic behavior resulting
with nonexistence of worst-case execution time, (b) memory
fragmentation, (c) running out of memory, (d) mismatched
allocations and deallocations, (e) dependence on non-deterministic
calls to kernel.

Non-automated Required No

A18-5-7 If non-realtime implementation of dynamic memory management
functions is used in the project, then memory shall only be allocated
and deallocated during non-realtime program phases.

Non-automated Required No

A18-5-8 Objects that do not outlive a function shall have automatic storage
duration.

Partially automated Required Yes

A18-5-9 Custom implementations of dynamic memory allocation and
deallocation functions shall meet the semantic requirements
specified in the corresponding “Required behaviour” clause from the
C++ Standard.

Automated Required Yes

A18-5-10 Placement new shall be used only with properly aligned pointers to
sufficient storage capacity.

Automated Required Yes

A18-5-11 “operator new” and “operator delete” shall be defined together. Automated Required Yes
A18-9-1 The std::bind shall not be used. Automated Required Yes
A18-9-2 Forwarding values to other functions shall be done via: (1) std::move

if the value is an rvalue reference, (2) std::forward if the value is
forwarding reference.

Automated Required Yes

A18-9-3 The std::move shall not be used on objects declared const or const&. Automated Required Yes
A18-9-4 An argument to std::forward shall not be subsequently used. Automated Required Yes
A20-8-1 An already-owned pointer value shall not be stored in an unrelated

smart pointer.
Automated Required Yes

A20-8-2 A std::unique_ptr shall be used to represent exclusive ownership. Automated Required Yes
A20-8-3 A std::shared_ptr shall be used to represent shared ownership. Automated Required Yes
A20-8-4 A std::unique_ptr shall be used over std::shared_ptr if ownership

sharing is not required.
Automated Required Yes

A20-8-5 std::make_unique shall be used to construct objects owned by
std::unique_ptr.

Automated Required Yes

A20-8-6 std::make_shared shall be used to construct objects owned by
std::shared_ptr.

Automated Required Yes

A20-8-7 A std::weak_ptr shall be used to represent temporary shared
ownership.

Non-automated Required Yes

A21-8-1 Arguments to character-handling functions shall be representable as
an unsigned char.

Automated Required Yes

A23-0-1 An iterator shall not be implicitly converted to const_iterator. Automated Required Yes
A23-0-2 Elements of a container shall only be accessed via valid references,

iterators, and pointers.
Automated Required Yes

https://www.blackduck.com

blackduck.com | 12

Rule Description Automation type Category Supported
A25-1-1 Non-static data members or captured values of predicate function

objects that are state related to this object’s identity shall not be
copied.

Automated Required Yes

A25-4-1 Ordering predicates used with associative containers and STL
sorting and related algorithms shall adhere to a strict weak ordering
relation.

Non-automated Required Yes

A26-5-1 Pseudorandom numbers shall not be generated using std::rand(). Automated Required Yes
A26-5-2 Random number engines shall not be default-initialized. Automated Required Yes
A27-0-1 Inputs from independent components shall be validated. Non-automated Required No
A27-0-2 A C-style string shall guarantee sufficient space for data and the null

terminator.
Automated Required Yes

A27-0-3 Alternate input and output operations on a file stream shall not be
used without an intervening flush or positioning call.

Automated Required Yes

A27-0-4 C-style strings shall not be used. Automated Required Yes
M0-1-1 A project shall not contain unreachable code. Automated Required Yes
M0-1-2 A project shall not contain infeasible paths. Automated Required Yes
M0-1-3 A project shall not contain unused variables. Automated Required Yes
M0-1-4 A project shall not contain non-volatile POD variables having only

one use.
Automated Required Yes

M0-1-8 All functions with void return type shall have external side effect(s). Automated Required Yes
M0-1-9 There shall be no dead code. Automated Required Yes
M0-1-10 Every defined function should be called at least once. Automated Advisory Yes
M0-2-1 An object shall not be assigned to an overlapping object. Automated Required Yes
M0-3-1 Minimization of run-time failures shall be ensured by the use of

at least one of: (a) static analysis tools/techniques; (b) dynamic
analysis tools/techniques; (c) explicit coding of checks to handle
run-time faults.

Non-automated Required No

M0-3-2 If a function generates error information, then that error information
shall be tested.

Non-automated Required Yes

M0-4-1 Use of scaled-integer or fixed-point arithmetic shall be documented. Non-automated Required No
M0-4-2 Use of floating-point arithmetic shall be documented. Non-automated Required No
M1-0-2 Multiple compilers shall only be used if they have a common, defined

interface.
Non-automated Required No

M2-7-1 The character sequence /* shall not be used within a C-style
comment.

Automated Required Yes

M2-10-1 Different identifiers shall be typographically unambiguous. Automated Required Yes
M2-13-2 Octal constants (other than zero) and octal escape sequences (other

than “\0”) shall not be used.
Automated Required Yes

M2-13-3 A “U” suffix shall be applied to all octal or hexadecimal integer literals
of unsigned type.

Automated Required Yes

M2-13-4 Literal suffixes shall be upper case. Automated Required Yes
M3-1-2 Functions shall not be declared at block scope. Automated Required Yes
M3-2-1 All declarations of an object or function shall have compatible types. Automated Required Yes
M3-2-2 The One Definition Rule shall not be violated. Automated Required Yes
M3-2-3 A type, object or function that is used in multiple translation units

shall be declared in one and only one file.
Automated Required Yes

https://www.blackduck.com

blackduck.com | 13

Rule Description Automation type Category Supported
M3-2-4 An identifier with external linkage shall have exactly one definition. Automated Required Yes
M3-3-2 If a function has internal linkage then all re-declarations shall include

the static storage class specifier.
Automated Required Yes

M3-4-1 An identifier declared to be an object or type shall be defined in a
block that minimizes its visibility.

Automated Required Yes

M3-9-1 The types used for an object, a function return type, or a function
parameter shall be token-for-token identical in all declarations and
re-declarations.

Automated Required Yes

M3-9-3 The underlying bit representations of floating-point values shall not
be used.

Automated Required Yes

M4-5-1 Expressions with type bool shall not be used as operands to
built-in operators other than the assignment operator =, the logical
operators &&, ||, !, the equality operators == and !=, the unary &
operator, and the conditional operator.

Automated Required Yes

M4-5-3 Expressions with type (plain) char and wchar_t shall not be used as
operands to built-in operators other than the assignment operator =,
the equality operators == and !=, and the unary & operator.

Automated Required Yes

M4-10-1 NULL shall not be used as an integer value. Automated Required Yes
M4-10-2 Literal zero (0) shall not be used as the null-pointer-constant. Automated Required Yes
M5-0-2 Limited dependence should be placed on C++ operator precedence

rules in expressions.
Partially automated Advisory Yes

M5-0-3 A cvalue expression shall not be implicitly converted to a different
underlying type.

Automated Required Yes

M5-0-4 An implicit integral conversion shall not change the signedness of
the underlying type.

Automated Required Yes

M5-0-5 There shall be no implicit floating-integral conversions. Automated Required Yes
M5-0-6 An implicit integral or floating-point conversion shall not reduce the

size of the underlying type.
Automated Required Yes

M5-0-7 There shall be no explicit floating-integral conversions of a cvalue
expression.

Automated Required Yes

M5-0-8 An explicit integral or floating-point conversion shall not increase the
size of the underlying type of a cvalue expression.

Automated Required Yes

M5-0-9 An explicit integral conversion shall not change the signedness of
the underlying type of a cvalue expression.

Automated Required Yes

M5-0-10 If the bitwise operators ~and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand.

Automated Required Yes

M5-0-11 The plain char type shall only be used for the storage and use of
character values.

Automated Required Yes

M5-0-12 Signed char and unsigned char type shall only be used for the
storage and use of numeric values.

Automated Required Yes

M5-0-14 The first operand of a conditional-operator shall have type bool. Automated Required Yes
M5-0-15 Array indexing shall be the only form of pointer arithmetic. Automated Required Yes
M5-0-16 A pointer operand and any pointer resulting from pointer arithmetic

using that operand shall both address elements of the same array.
Automated Required Yes

M5-0-17 Subtraction between pointers shall only be applied to pointers that
address elements of the same array.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 14

Rule Description Automation type Category Supported
M5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except

where they point to the same array.
Automated Required Yes

M5-0-20 Non-constant operands to a binary bitwise operator shall have the
same underlying type.

Automated Required Yes

M5-0-21 Bitwise operators shall only be applied to operands of unsigned
underlying type.

Automated Required Yes

M5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a
derived class by means of dynamic_cast.

Automated Required Yes

M5-2-3 Casts from a base class to a derived class should not be performed
on polymorphic types.

Automated Advisory Yes

M5-2-6 A cast shall not convert a pointer to a function to any other pointer
type, including a pointer to function type.

Automated Required Yes

M5-2-8 An object with integer type or pointer to void type shall not be
converted to an object with pointer type.

Automated Required Yes

M5-2-9 A cast shall not convert a pointer type to an integral type. Automated Required Yes
M5-2-10 The increment (++) and decrement (--) operators shall not be mixed

with other operators in an expression.
Automated Required Yes

M5-2-11 The comma operator, && operator and the || operator shall not be
overloaded.

Automated Required Yes

M5-2-12 An identifier with array type passed as a function argument shall not
decay to a pointer.

Automated Required Yes

M5-3-1 Each operand of the ! operator, the logical && or the logical ||
operators shall have type bool.

Automated Required Yes

M5-3-2 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Automated Required Yes

M5-3-3 The unary & operator shall not be overloaded. Automated Required Yes
M5-3-4 Evaluation of the operand to the sizeof operator shall not contain

side effects.
Automated Required Yes

M5-8-1 The right hand operand of a shift operator shall lie between zero and
one less than the width in bits of the underlying type of the left hand
operand.

Partially automated Required Yes

M5-14-1 The right hand operand of a logical &&, || operators shall not contain
side effects.

Automated Required Yes

M5-17-1 The semantic equivalence between a binary operator and its
assignment operator form shall be preserved.

Non-automated Required No

M5-18-1 The comma operator shall not be used. Automated Required Yes
M5-19-1 Evaluation of constant unsigned integer expressions shall not lead to

wrap-around.
Automated Required Yes

M6-2-1 Assignment operators shall not be used in sub-expressions. Automated Required Yes
M6-2-2 Floating-point expressions shall not be directly or indirectly tested for

equality or inequality.
Partially automated Required Yes

M6-2-3 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment, provided that the first
character following the null statement is a white-space character.

Automated Required Yes

M6-3-1 The statement forming the body of a switch, while, do ... while or for
statement shall be a compound statement.

Automated Required Yes

https://www.blackduck.com

blackduck.com | 15

Rule Description Automation type Category Supported
M6-4-1 An if (condition) construct shall be followed by a compound

statement. The else keyword shall be followed by either a compound
statement, or another if statement.

Automated Required Yes

M6-4-2 All if ... else if constructs shall be terminated with an else clause. Automated Required Yes
M6-4-3 A switch statement shall be a well-formed switch statement. Automated Required Yes
M6-4-4 A switch-label shall only be used when the most closely-enclosing

compound statement is the body of a switch statement.
Automated Required Yes

M6-4-5 An unconditional throw or break statement shall terminate every
non-empty switch-clause.

Automated Required Yes

M6-4-6 The final clause of a switch statement shall be the default-clause. Automated Required Yes
M6-4-7 The condition of a switch statement shall not have bool type. Automated Required Yes
M6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the

loop-counter shall only be used as an operand to <=, <, > or >=.
Automated Required Yes

M6-5-3 The loop-counter shall not be modified within condition or statement. Automated Required Yes
M6-5-4 The loop-counter shall be modified by one of: --, ++, -= n, or += n;

where n remains constant for the duration of the loop.
Automated Required Yes

M6-5-5 A loop-control-variable other than the loop-counter shall not be
modified within condition or expression.

Automated Required Yes

M6-5-6 A loop-control-variable other than the loop-counter which is modified
in statement shall have type bool.

Automated Required Yes

M6-6-1 Any label referenced by a goto statement shall be declared in the
same block, or in a block enclosing the goto statement.

Automated Required Yes

M6-6-2 The goto statement shall jump to a label declared later in the same
function body.

Automated Required Yes

M6-6-3 The continue statement shall only be used within a well-formed for
loop.

Automated Required Yes

M7-1-2 A pointer or reference parameter in a function shall be declared as
pointer to const or reference to const if the corresponding object is
not modified.

Automated Required Yes

M7-3-1 The global namespace shall only contain main, namespace
declarations and extern “C” declarations.

Automated Required Yes

M7-3-2 The identifier main shall not be used for a function other than the
global function main.

Automated Required Yes

M7-3-3 There shall be no unnamed namespaces in header files. Automated Required Yes
M7-3-4 Using-directives shall not be used. Automated Required Yes
M7-3-6 Using-directives and using-declarations (excluding class scope or

function scope using-declarations) shall not be used in header files.
Automated Required Yes

M7-4-1 All usage of assembler shall be documented. Non-automated Required No
M7-4-2 Assembler instructions shall only be introduced using the asm

declaration.
Automated Required Yes

M7-4-3 Assembly language shall be encapsulated and isolated. Automated Required Yes
M7-5-1 A function shall not return a reference or a pointer to an automatic

variable (including parameters), defined within the function.
Non-automated Required Yes

M7-5-2 The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object has
ceased to exist.

Non-automated Required Yes

https://www.blackduck.com

blackduck.com | 16

Rule Description Automation type Category Supported
M8-0-1 An init-declarator-list or a member-declarator-list shall consist of a

single init-declarator or member-declarator respectively.
Automated Required Yes

M8-3-1 Parameters in an overriding virtual function shall either use the same
default arguments as the function they override, or else shall not
specify any default arguments.

Automated Required Yes

M8-4-2 The identifiers used for the parameters in a re-declaration of a
function shall be identical to those in the declaration.

Automated Required Yes

M8-4-4 A function identifier shall either be used to call the function or it shall
be preceded by &.

Automated Required Yes

M8-5-2 Braces shall be used to indicate and match the structure in the non-
zero initialization of arrays and structures.

Automated Required Yes

M9-3-1 Const member functions shall not return non-const pointers or
references to class-data.

Automated Required Yes

M9-3-3 If a member function can be made static then it shall be made static,
otherwise if it can be made const then it shall be made const.

Automated Required Yes

M9-6-1 When the absolute positioning of bits representing a bit-field
is required, then the behavior and packing of bit-fields shall be
documented.

Non-automated Required No

M9-6-4 Named bit-fields with signed integer type shall have a length of more
than one bit.

Automated Required Yes

M10-1-1 Classes should not be derived from virtual bases. Automated Advisory Yes
M10-1-2 A base class shall only be declared virtual if it is used in a diamond

hierarchy.
Automated Required Yes

M10-1-3 An accessible base class shall not be both virtual and non-virtual in
the same hierarchy.

Automated Required Yes

M10-2-1 All accessible entity names within a multiple inheritance hierarchy
should be unique.

Automated Advisory Yes

M10-3-3 A virtual function shall only be overridden by a pure virtual function if
it is itself declared as pure virtual.

Automated Required Yes

M11-0-1 Member data in non-POD class types shall be private. Automated Required Yes
M12-1-1 An object’s dynamic type shall not be used from the body of its

constructor or destructor.
Automated Required Yes

M14-5-3 A copy assignment operator shall be declared when there is a
template assignment operator with a parameter that is a generic
parameter.

Automated Required Yes

M14-6-1 In a class template with a dependent base, any name that may be
found in that dependent base shall be referred to using a qualified-id
or this->.

Automated Required Yes

M15-0-3 Control shall not be transferred into a try or catch block using a goto
or a switch statement.

Automated Required Yes

M15-1-1 The assignment-expression of a throw statement shall not itself
cause an exception to be thrown.

Automated Required Yes

M15-1-2 NULL shall not be thrown explicitly. Automated Required Yes
M15-1-3 An empty throw (throw;) shall only be used in the compound

statement of a catch handler.
Automated Required Yes

M15-3-1 Exceptions shall be raised only after start-up and before termination. Automated Required Yes

https://www.blackduck.com

blackduck.com | 17

Rule Description Automation type Category Supported
M15-3-3 Handlers of a function-try-block implementation of a class

constructor or destructor shall not reference non-static members
from this class or its bases.

Automated Required Yes

M15-3-4 Each exception explicitly thrown in the code shall have a handler of a
compatible type in all call paths that could lead to that point.

Automated Required Yes

M15-3-6 Where multiple handlers are provided in a single try-catch statement
or function-try-block for a derived class and some or all of its bases,
the handlers shall be ordered most-derived to base class.

Automated Required Yes

M15-3-7 Where multiple handlers are provided in a single try-catch statement
or function-try-block, any ellipsis (catch-all) handler shall occur last.

Automated Required Yes

M16-0-1 #include directives in a file shall only be preceded by other pre-
processor directives or comments.

Automated Required Yes

M16-0-2 Macros shall only be #define’d or #undef’d in the global namespace. Automated Required Yes
M16-0-5 Arguments to a function-like macro shall not contain tokens that

look like pre-processing directives.
Automated Required Yes

M16-0-6 In the definition of a function-like macro, each instance of a
parameter shall be enclosed in parentheses, unless it is used as the
operand of # or ##.

Automated Required Yes

M16-0-7 Undefined macro identifiers shall not be used in #if or #elif pre-
processor directives, except as operands to the defined operator.

Automated Required Yes

M16-0-8 If the # token appears as the first token on a line, then it shall be
immediately followed by a pre-processing token.

Automated Required Yes

M16-1-1 The defined pre-processor operator shall only be used in one of the
two standard forms.

Automated Required Yes

M16-1-2 All #else, #elif and #endif pre-processor directives shall reside in the
same file as the #if or #ifdef directive to which they are related.

Automated Required Yes

M16-2-3 Include guards shall be provided. Automated Required Yes
M16-3-1 There shall be at most one occurrence of the # or ## operators in a

single macro definition.
Automated Required Yes

M16-3-2 The # and ## operators should not be used. Automated Advisory Yes
M17-0-2 The names of standard library macros and objects shall not be

reused.
Automated Required Yes

M17-0-3 The names of standard library functions shall not be overridden. Automated Required Yes
M17-0-5 The setjmp macro and the longjmp function shall not be used. Automated Required Yes
M18-0-3 The library functions abort, exit, getenv and system from library

<cstdlib> shall not be used.
Automated Required Yes

M18-0-4 The time handling functions of library <ctime> shall not be used. Automated Required Yes
M18-0-5 The unbounded functions of library <cstring> shall not be used. Automated Required Yes
M18-2-1 The macro offsetof shall not be used. Automated Required Yes
M18-7-1 The signal handling facilities of <csignal> shall not be used. Automated Required Yes
M19-3-1 The error indicator errno shall not be used. Automated Required Yes
M27-0-1 The stream input/output library <cstdio> shall not be used. Automated Required Yes

https://www.blackduck.com

Black Duck® offers the most comprehensive, powerful, and trusted portfolio of application
security solutions in the industry. We have an unmatched track record of helping organizations
around the world secure their software quickly, integrate security efficiently in their
development environments, and safely innovate with new technologies. As the recognized
leaders, experts, and innovators in software security, Black Duck has everything you need to
build trust in your software. Learn more at www.blackduck.com.

©2024 Black Duck Software, Inc. All rights reserved. Black Duck is a trademark of Black Duck Software, Inc. in the United States and other countries. All other names mentioned
herein are trademarks or registered trademarks of their respective owners. September 2024

About Black Duck

blackduck.com | 18

https://www.blackduck.com
https://www.blackduck.com

