
WHITE PAPER

Meeting ISO 26262 Guidelines with the
Black Duck Portfolio

blackduck.com | 2

Table of contents

Introduction to ISO 26262 ... 3

Challenges in automotive software development ... 3

Introduction to the Black Duck portfolio .. 3

Applying the Black Duck portfolio to ISO 26262 requirements... 5

General topics for the product development at the software level
(ISO 26262:2018, Part 6, Section 5) .. 5

Use of continuous integration, and integration of automated tooling ..5

Cybersecurity .. 5

Distributed development – Augmenting requirements within the development interface agreement (DIA)6

Tool qualification .. 6

Validation of the software tool ..6

Software modeling and coding guidelines (ISO 26262:2018, Part 6, Section 1) ...6

ISO 26262:2018, Part 6, Table 1: Topics to be covered by modeling and coding guidelines ..7

Software unit design and implementation (ISO 26262:2018, Part 6, Section 8) ..8

ISO 26262:2012, Part 6, Table 6: Design principles for software unit design and implementation8

Testing of the embedded software (ISO 26262:2018, Part 6, Section 9) ..9

ISO 26262:2012, Part 6, Table 7: Methods for software unit verification ...9

Testing of the embedded software (ISO 26262:2018, Part 6, Section 11) ...10

ISO 26262:2018 Table 13: Test environments for conducting the software testing .. 10

ISO 26262:2018 Table 14: Methods for tests of the embedded software .. 11

ISO 26262:2018 Table 15: Methods for deriving test cases for software unit testing ... 11

https://www.blackduck.com

blackduck.com | 3

Introduction to ISO 26262
To help address vehicle safety, the International Organization for Standardization (ISO) put forth ISO 26262 in 2011 for road
vehicle functional safety. The standard was created to provide guidance to avoid the risk of systematic failures and random
hardware failures through feasible requirements and processes. ISO 26262 is the adaptation of IEC 61508 to comply with needs
specific to the application sector of electric and or electronic elements such as power supplies, sensors and other input devices,
data highway, and other communication paths, actuators, and other output devices. The purpose of this paper is to discuss how
the Black Duck portfolio can be used to help meet the guidelines set forth in ISO 26262.

The standard is comprised of 12 parts that span the breadth of the automotive safety lifecycle including management,
development, production, operation service, and decommissioning.

Challenges in automotive software development
Modern software development environments and practices in the automotive domain are marked by increasing demands for
agility, consolidation of functionality, and rapid change. Additionally, with the advent of autonomous vehicles and increased
connectivity, the spectrum of risk and exposure has broadened.

Related challenges that Black Duck has seen across our client base include:

• Larger, more complex software

 – Complications for traceability and identification of code re-use, particularly with open source components in first-party and
third-party platforms

 – Adoption and management of coding standards (e.g. MISRA) at large scale in complex codebases

• Supply chain and supplier management

 – Supply chain management of safety and security requirements

 – Use of qualified tooling during software development

• Communication reliability and robustness requirements for connected components

• Management of cybersecurity vulnerabilities during design and after release to production

• Adoption of qualified tooling for use during development

Introduction to the Black Duck portfolio
Black Duck’s portfolio is designed to help developers, management, and organizations easily find and fix quality and security
problems early in the software development lifecycle, as the code is being written, without impacting time-to-market, cost, or
customer satisfaction.

Black Duck solutions augment traditional testing, including quality assurance (QA), functional and performance testing, and
security audits, providing development teams with a quick and easy way to test their code for defects and to ensure critical code
has been properly tested in a non-intrusive manner. This enables development to stay focused on innovation, management to
get visibility into problems early in the cycle to make better decisions, and organizations to continue to quickly deliver high-quality
products to market for competitive advantage.

The average car is expected to contain 300 million lines of code in the next decade, up from 100
million lines of code in today’s cars.1 And software is expected to account for 90% of automobile
innovation.2 Software controls everything from safety-critical systems like brakes and power steering,
to basic vehicle controls like doors and windows, V2V, V2I, and sophisticated infotainment systems
and telematics. However, with the exponential growth of software comes a dramatic increase in
software defects. The average car is expected to contain up to 150,000 bugs,3 many of which could
damage the brand, hurt customer satisfaction and, in the most extreme case, lead to a catastrophic
failure. Toyota issued two recalls of its popular Prius model in 2018, affecting 2.43 million vehicles,
because of a software glitch that caused the cars to stall, increasing the risk of a crash at high
speeds.4 That’s just one example out of dozens since 2000, impacting manufacturers from Alfa
Romeo, Fiat, and BMW to Ford, GM, and Nissan, and affecting tens of millions of vehicles.5

https://www.blackduck.com

blackduck.com | 4

Black Duck provides the industry’s leading development testing portfolio with tailored solutions for development and
management teams that can assist organizations with achieving ISO 26262 compliance.

In addition, Coverity® Static Analysis is certified by TUV SUD Product Service GmbH according to the applicable requirements of
the standard IEC 61508 and ISO 26262 for developing and testing safety-critical software.

Coverity Static Analysis – Black Duck delivers the industry’s most accurate and comprehensive static analysis solution. It is used
by developers around the world to improve the quality of their code by enabling them to find and fix defects in C/C++, Java, and
C# code (along with many other languages) faster, which results in lower overall costs. Organizations can create customized
analysis rules to support their unique requirements through the Coverity Extend Software Development Kit (SDK). Coverity also
includes a powerful framework for implementing custom coding policies, named Code XM. Static analysis is included in ISO
26262 as a formal verification method for adherence to the coding guidelines and can be used for reviewing pieces of code
that access memory locations containing safety-related data as specified in ISO 26262 Annex D, freedom from interference by
software partitioning.

Coverity Connect for on-premises deployment – This web portal solution provides a centralized defect management workflow
that enables developers and managers to quickly view defects in the source code and take the appropriate action to resolve
them. Developers and managers can identify defects associated with a particular Automotive Safety Integrity Level (ASIL) and
find where defects occur across various code branches. This capability is a critical time-saver for development teams as code
reuse is prevalent in the automotive industry.

Coverity Policy Manager – This solution enables organizations to establish and enforce consistent policies tied to safety
requirements defined in ISO 26262, by ASIL level. It enables users to define clear and comprehensible policies to meet the key
requirements for this standard. Once the policies have been established, organizations can test against them with Coverity
Static Analysis and quickly visualize areas of risk in the project by component and ASIL level. Managers and executives get a
hierarchical view of risk, can understand the relative effort required to address the defect, and can drill down to details to pinpoint
the specific issues or verify that specific safety requirements have been satisfied.

Black Duck SCA – The Black Duck SCA solution from Black Duck performs software composition analysis (SCA), which enables
software developers to identify third-party and/or open source components within their existing codebase. A typical HMI system
may encompass hundreds of software packages, many of which originate from open source platforms such as Automotive
Grade Linux (AGL) or Android. By utilizing Black Duck’s software composition analysis, a developer may easily discern which
packages are re-use and apply “proven in use” arguments to exclude these from safety scope if appropriate. The additional
benefits of adopting Black Duck in this way also include alerting to software license obligations, as well as security vulnerabilities
that originate from open source software packages.

Defensics® Fuzzing – Fuzz testing, or “fuzzing,” is a method of test case generation and delivery that manipulates normal
or expected inputs in an attempt to trigger failure modes within the target system. Through fuzzing, it is possible to identify
crash-causing software defects that may be the root cause of cybersecurity vulnerabilities or safety problems. Defensics is the
industry’s only professional grade fuzz testing tool and is well known for identifying the anomaly that gave rise to the Heartbleed
SSL vulnerability in 2014.

Consulting services – Through a network of more than 200 consultants worldwide, Black Duck provides expert security services
to clients across all industries. Within the automotive industry, Black Duck provides Threat And Risk Assessment (TARA) as well
as security validation (penetration testing) engagements. In addition, Black Duck can provide expert strategy consulting to help
organizations develop competencies within their teams.

https://www.blackduck.com
https://www.blackduck.com/static-analysis-tools-sast/coverity.html
https://www.blackduck.com/software-composition-analysis-tools/black-duck-sca.html
https://www.blackduck.com/fuzz-testing.html
https://www.blackduck.com/services/security-testing.html

blackduck.com | 5

Applying the Black Duck portfolio to ISO 26262 requirements
General topics for the product development at the software level (ISO 26262:2018, Part
6, Section 5)
Use of continuous integration, and integration of automated tooling

The ISO 26262 standard calls out examples of methods and development approaches that support consistency of development
activities and work products. In particular highlighted in Note 1, Example 2 is the role of automated tooling to achieve this goal.

All of the Black Duck tooling detailed in this document are highly amenable to automated invocation, and include plugins for the
most common continuous integration and continuous delivery tools such as Jenkins and Azure DevOps.

Organizations seeking to adopt such automation are encouraged to consider the following qualities for Static Analysis within
continuous integration scenarios:

• Time taken to process large volumes of code – changes need to be analyzed quickly

• Ability to run in a fast incremental mode against small changes only

• Ability to run against partial code changes, rather than the entire codebase

• Volume of output generated with each small (incremental) change

• Advanced workflow features for managing the issues identified

• Alerts when new problems occur in past analysis runs, and automatically generating items on the development team backlog
when this occurs

Cybersecurity
ISO 26262:2018 specifically notes that cybersecurity may be considered during the development of embedded software. Black
Duck strongly recommends that the topics of cybersecurity, quality, risk, and safety be considered in a unified approach. Many
of the tools and methods highlighted in industry cybersecurity standards overlap with the tools and activities that organizations
typically adopt for safety, quality, and reliability.

Although the scope of ISO 26262:2018 relates primarily to functional safety, Black Duck helps organizations carry out a range of
security activities that may generate new safety hazards as defined in Clause 6.4.5 and Annex E of ISO 26262:2018 Part 2:

• Risk assessment / threat modeling (TARA) carried out during design activities (Appendix E.3.2)

• Static code analysis to identify coding standards and security vulnerabilities during development (Appendix E.3.3)

• Identification of robustness failures that may cause security vulnerabilities, via automated fuzzing (Appendix E.3.3)

• Automated and manual penetration testing at the unit, component, and system level during verification and validation phases
(Appendix E.3.3)

• Identification of open source packages, and ongoing monitoring for new vulnerabilities in third-party open source software
components (Appendix E.3.4)

Black Duck is also involved as a member in formulating the SAE J3061 and ISO 21434 standards, which define comprehensive
strategies for automotive cybersecurity.

https://www.blackduck.com

blackduck.com | 6

Distributed development – Augmenting requirements within the development
interface agreement (DIA)
ISO 26262:2018 provides, through Part 8, a number of clauses to specify a development interface agreement (DIA) to facilitate
end-to-end collaboration in a distributed development scenario.

Typically, Black Duck customers include in the DIA the requirements for tool usage, scope, and reporting. Some of these
requirements include:

• Metrics reports (e.g. HIS metrics), generated from static code analysis

• Scope of coding standards (e.g. MISRA) application, enforcement, and reporting requirements

• Requirements to perform particular types of security testing (e.g. penetration testing, risk assessment/TARA)

• Number of test cases and time taken to run fuzz testing

• Declaration of open source components in a software bill of materials (SBOM)

These requirements, in turn, are passed down the supply chain to software suppliers, ensuring assurance activities are
performed and execution data is reported when producing software deliverables.

Tool qualification
Coverity is certified by TÜV SÜD Product Service GmbH as meeting the requirements for support tools according to IEC 61508-3.
The tool is qualified for use in safety-related software development according to ISO 26262, IEC 61508, EN 50128, and EN 50657.
The tool is classified as T2, for use up to ASIL D in accordance with ISO 26262:2011-8.

The documentation pack for the Coverity distribution includes the necessary functional safety manual, which describes tool
operation and failure modes – including the risk of misconfiguration, and of false positives and false negatives.

Validation of the software tool

For ASIL D development, teams that must perform tool validation according to ISO 26262 Part 8-11 (“Confidence in the use of
software tools”) need to complete tool validation within their build environment. This helps ensure that safety-critical defects are
not missed due to installation or configuration errors.

The Coverity Qualification Kit ensures that Coverity is configured and operating properly within the customer’s build environment.
This self-test feature produces a tool qualification report describing the tests that were run and the results of those tests to
validate that Coverity is properly configured. The qualification process is consistent with the recommendations of ISO 26262
Part 8-11.4.9.

Software modeling and coding guidelines (ISO 26262:2018, Part 6, Section 1)
As part of the initiation of the product development phase at the software level, ISO 26262 created a set of coding and modeling
guidelines that are published in Table 1 of the Software Development Module. The Black Duck portfolio supports these guidelines
in the following manner:

Table legend:

++ indicates highly recommended

+ indicates recommended

o indicates that the method has no recommendation for or against its usage for the identified ASIL

https://www.blackduck.com

blackduck.com | 7

ISO 26262:2018, Part 6, Table 1: Topics to be covered by modeling and coding guidelines

Topic Black Duck Portfolio Support
ASIL

A B C D
Enforcement of
low complexity
(1a)

Coverity will analyze code and compute cyclomatic complexity and
Halstead metrics. Policies can be defined according to HIS metrics to
identify functions which exceed a defined threshold of complexity.

++ ++ ++ ++

Use of language
subsets (1b)

Coverity allows the enforcement of commonly used language
subsets and coding standards – e.g. MISRA C/C++, AUTOSAR C++,
CERT C/C++, and others.

Custom coding rules can be authored for specific API or
organizational coding standards as required using the Code XM
extension framework.

++ ++ ++ ++

Enforcement of
strong typing (1c)

C and C++ are considered less strongly typed than other languages
such as Java because of their support for implicit and explicit casting.

Coverity will automatically find unsafe casting and flag the
occurrence as a defect.

Additional checks can be created through the Coverity Code XM
framework. For example, if casting is disallowed, a custom checker
could be created to create a defect for every cast operation.

++ ++ ++ ++

Use of defensive
implementation
techniques (1d)

Coverity enforces defensive programming by highlighting as an error
failure to check return value of any function; not just checking for null
but verifying or testing returned value for possible error conditions.

This is the ‘CHECKED_RETURN’ rule in the Coverity engine.

+ + ++ ++

Use of
established
design principles
(1e)

Black Duck SCA can be utilized to verify that already known good
components are utilized within the development, and alert in the case
that disallowed or unknown components are found.

Through the Coverity SDK, custom analysis rules can be created to
test for specific violations of select design principles such as the use
of global variables.

+ + ++ ++

Use of
unambiguous
graphical
representation
(1f)

Not applicable + ++ ++ ++

Use of style
guides (1g)

Coverity includes a powerful framework for implementing custom
coding policies, named Code XM. Users of Coverity can customize
this tool to match their own style guides or engage Black Duck
services to assist in developing custom rules where required.

+ ++ ++ ++

Use of naming
conventions (1h)

The Coverity Code XM extension framework can be used to create a
custom check for naming convention violations.

++ ++ ++ ++

Concurrency
aspects (1i)

While coding standards such as MISRA will restrict the available
concurrency functions available for use, Coverity includes a number
of built-in checks specifically targeted at finding concurrency related
errors including deadlocks, resource exhaustion, and inconsistent
usage of locking and thread management routines.

+ + + +

Software unit design and implementation (ISO 26262:2018, Part 6, Section 8)

https://www.blackduck.com

blackduck.com | 8

Once the architectural design is complete, the next stage in the ISO 26262 standard is software unit design and implementation.

The standard supplies numerous guidelines for software design and implementation to ensure the correct order of execution,
consistency of interfaces, correctness of data flow and control flow, simplicity, readability and comprehensibility, and robustness.

During development, Black Duck enables developers to ensure that their code conforms to ISO 26262 design principles. This is
accomplished primarily by implementing industry-specific coding standards rules such as MISRA C/C++.

ISO 26262:2012, Part 6, Table 6: Design principles for software unit design and
implementation

Topic Black Duck Portfolio Support Rule Mapping
ASIL

A B C D
One entry and
one exit point in
subprograms and
functions (1a)

Coverity automatically analyzes return
statements to determine if more than one
entry or exit point exists in a component or
function.

MISRA C 2004 Rules

14.4 and 14.7, MISRA
C 2012 Rules 15.1 and
15.5

++ ++ ++ ++

No dynamic
objects or
variables, or else
online testing
during their
creation (1b)

Coverity automatically analyzes the code
to identify if the use of dynamic objects
are properly tested during their creation.
For example, users can analyze the code
to ensure that if malloc() is used, the return
must be checked.

MISRA-C 2012 Directive

4.12

+ ++ ++ ++

Initialization of
variables (1c)

Coverity automatically tests the code for
uninitialized variables.

MISRA C 2004 Rule 9.1,
MISRA C 2012 Rules

9.1 and 9.4

++ ++ ++ ++

No multiple use
of variable names
(1d)

Coverity automatically creates parse
warnings that appear as actionable defects
to the developer for such issues as local
hiding local, local hiding parameter, and
linkage conflict issues.

MISRA C 2004 Rule 5.5,
MISRA C 2012 Rules

5.8 and 5.9

++ ++ ++ ++

Avoid global
variables or else
justify their usage
(1e)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012 Rule

5.1 and 5.2, together
with Rule 5.8 would
effectively constrain
this behavior.

+ + ++ ++

Limited use of
pointers (1f)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012 Section

8.18 would limit
the scope of risks
originating from pointer
usage.

+ ++ ++ ++

No implicit type
conversions (1g)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012 Section

8.10 rules would
identify violations of
this requirement.

+ ++ ++ ++

No hidden data
flow or control
flow (1h)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012 Section

8.15 rules would
identify control flow
discrepancies.

+ ++ ++ ++

No unconditional
jumps (1i)

In the context of the C and C++ languages,
these issues would be addressed by
coding standards checkers.

MISRA-C 2012

Section 8.15 rules
would identify control
flow issues such as
unconditional jumps.

++ ++ ++ ++

https://www.blackduck.com

blackduck.com | 9

Topic Black Duck Portfolio Support Rule Mapping
ASIL

A B C D

No recursions (1j) Coverity is able to identify both direct and
indirect recursion at considerable depth.

MISRA-C 2012 Rule

17.2 forbids recursion.

+ + ++ ++

Testing of the embedded software (ISO 26262:2018, Part 6, Section 9)
Section 9 of the standard covers software unit verification and outlines a number of requirements to support the core functional
requirements as well as highlighting safety relevant activities which should also be carried out at this phase of the life cycle.

Black Duck tooling supports a number of these methods directly, but in addition, Black Duck recommends the output from prior
tooling operation should be leveraged as part of manual review activities and become integrated into the software sign-off
process.

ISO 26262:2012, Part 6, Table 7: Methods for software unit verification

Topic Black Duck Portfolio Support
ASIL

A B C D

Walk through (1a) For manual review processes, it’s recommended that users
consult the output from the relevant analysis tools as part of
their review process:
• Coverity static analysis findings
• Defensics testing reports
• Black Duck policy reports and Bill of Materials

In addition to this, functionality such as secondary
review may be implemented in each tool, before a finding
is dismissed, as a matter of good practice in defect
management.

++ + o o

Pair-programming
(1b)

+ + + +

Inspection (1c) + ++ ++ ++

Semi-formal
verification (1d)

Coverity utilizes both semiformal and formal methods
as part of its analysis—for example, when traversing
conditions in code—and uses this information to augment its
understanding of the program under analysis.

+ + ++ ++

Formal
verification (1e)

o o + +

Control flow
analysis (1f)

Coverity creates an internal graph of program control flow
and uses this to detect control flow–related problems such
as unreachable code, infinite loops, and dead code.

+ + ++ ++

Data flow
analysis (1g)

Coverity performs value tracking internally to identify several
categories of defect including tainted data flow, buffer size
miscalculations, and division by zero errors.

+ + ++ ++

Static code
analysis (1h)

Coverity performs static code analysis based on abstract
representation to detect coding standards violations.

++ ++ ++ ++

Static analyses
based on abstract
representation
(1i)

Coverity performs static code analysis based on abstract
representation to detect many categories of defects such as
concurrency issues, security issues, memory management,
and resource management, which extends beyond the level
of complexity of simple coding standards checks.

+ + + +

Requirements
based test (1j)

For network interfaces and file formats, Defensics generates
test cases based on protocol specifications as requirements.

++ ++ ++ ++

Interface test (1k) For network interfaces and file formats, Defensics supports
testing interfaces that communicate in both supported and
proprietary protocols.

++ ++ ++ ++

https://www.blackduck.com

blackduck.com | 10

Fault injection
test (1l)

Defensics generates test cases for use in fault injection
by manipulating message payload, sequence, and meta
information, according to the standard or custom protocol or
format specified.

+ + + ++

Resource usage
evaluation (1m)

Coverity detects a number of categories of resource
mismanagement including excessive program stack size
allocations and failure to release allocated resources
(resource leaks).

+ + + ++

Back to back
comparison test
between model
and code, if
applicable (1n)

Black Duck consulting services can provide code review
and threat model creation, which can be used to compare
implemented code to software design.

+ + ++ ++

Testing of the embedded software (ISO 26262:2018, Part 6, Section 11)
Software unit testing is an important requirement in the ISO26262 standard. Software unit tests must be planned, specified, and
executed.

The ISO standard specifies that the goal of these verification activities is not just to affirm compliance with specification of
hardware-software interface(s), but also to provide confidence in the absence of unintended functionality and properties.

To address this part of the standard, Black Duck proposes that organizations adopt fuzz testing (“fuzzing”) – a method by which
known good data is mutated to create new test cases, intended to discover and exercise boundary conditions in the target
device code.

Defensics is applicable primarily to interfaces exchanging data with external systems – such as network protocols, or file
formats. Where a communication protocol is proprietary, Defensics can be utilized as a configurable engine via the Defensics
SDK to create custom protocol implementations.

ISO 26262:2018 Table 13: Test environments for conducting the software testing

Topic Black Duck Portfolio Support
ASIL

A B C D

Hardware-in-loop
(1a)

Defensics is able to integrate with any third-party hardware-in-loop
system via customized instrumentation scripting. The extensibility
is extremely flexible and well documented. Black Duck is also able to
provide services to integrate with common HIL test stands.

++ ++ ++ ++

Electronic control
unit network
environments (1b)

Defensics is intended primarily for testing interfaces between
software components and supports over 200 protocols for this
purpose, including common bus protocols, such as CAN and CAN-FD.

++ ++ ++ ++

Vehicles (1c) Defensics is suitable for direct connection to vehicles in test
environments and includes advanced features for bus diagnostics for
this purpose.

+ + ++ ++

ISO 26262:2018 Table 14: Methods for tests of the embedded software

Topic Black Duck Portfolio Support
ASIL

A B C D

https://www.blackduck.com

blackduck.com | 11

Requirements-
based test (1a)

Defensics data is based upon protocol standards and RFCs. For
proprietary protocols, Defensics is extensible via an SDK.

++ ++ ++ ++

Fault-injection
test (1b)

Defensics is intended to manipulate extreme corner cases of protocol
implementations.

+ + + ++

ISO 26262:2018 Table 15: Methods for deriving test cases for software unit testing

Topic Black Duck Portfolio Support
ASIL

A B C D
Analysis of
requirements (1a)

Defensics data is based upon protocol standards and RFCs. For
proprietary protocols, Defensics is extensible via an SDK.

++ ++ ++ ++

Generation
and analysis
of equivalence
classes (1b)

Defensics generates test cases that are modeled on real protocol
behavior and dialogs.

+ ++ ++ ++

Analysis of
boundary values
(1c)

Defensics is intended to manipulate extreme corner cases of protocol
implementations.

+ ++ ++ ++

Error guessing
based on
knowledge or
experience (1d)

Defensics’ premise is that fuzz testing is known to trigger unexpected
conditions within applications, including some well-known software
security vulnerabilities.

+ + ++ ++

Analysis of
functional
dependencies
(1e)

Black Duck Binary Analysis from Black Duck can be used to determine
what functionality is present in a particular software module by
identifying dependent libraries (e.g. network servers, protocol parsers,
and file handlers). This can then be utilized to formulate plans for fuzz
testing.

+ + ++ ++

Analysis of
operational use
cases (1f)

As part of a TARA/HARA activity, risks associated with external
interfaces should be identified. This in turn would be used to
formulate a plan for fuzz testing scope and requirements.

+ ++ ++ ++

Resources

1. “The race for cybersecurity: Protecting the connected car in the era of new regulation,” McKinsey & Company, Deichmann, Johannes; Klein, Benjamin; Scherf,
Gundbert; Stuetzle, Rupert; October 10, 2019.

2. “Volkswagen CEO expects software to make up 90 percent of auto industry innovation,” Reuters, March 12, 2019.

3. “Tech.View: Cars and software bugs,” The Economist, May 16, 2010.

4. “Potentially deadly automotive software defects,” Better Embedded System SW, September 25, 2018.

5. Ibid.

https://www.blackduck.com
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-race-for-cybersecurity-protecting-the-connected-car-in-the-era-of-new-regulation
https://auto.economictimes.indiatimes.com/news/industry/vw-ceo-expects-software-to-make-up-90-percent-of-auto-industry-innovation/68384527
https://www.economist.com/babbage/2010/05/16/techview-cars-and-software-bugs
https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html

Black Duck® offers the most comprehensive, powerful, and trusted portfolio of
application security solutions in the industry. We have an unmatched track record of
helping organizations around the world secure their software quickly, integrate security
efficiently in their development environments, and safely innovate with new technologies.
As the recognized leaders, experts, and innovators in software security, Black Duck has
everything you need to build trust in your software. Learn more at www.blackduck.com.

©2024 Black Duck Software, Inc. All rights reserved. Black Duck is a trademark of Black Duck Software, Inc. in the United States and other countries. All other names
mentioned herein are trademarks or registered trademarks of their respective owners. September 2024

About Black Duck

blackduck.com | 12

https://www.blackduck.com
https://www.blackduck.com

	Introduction to ISO 26262
	Challenges in automotive software development
	Introduction to the Synopsys Software Integrity Portfolio
	Applying the Synopsys software integrity portfolio to ISO 26262 requirements
	General topics for the product development at the software level (ISO 26262:2018, Part 6, Section 5)
	Use of continuous integration, and integration of automated tooling

	Cybersecurity
	Distributed development – Augmenting software integrity requirements within the development interface agreement (DIA)
	Tool qualification
	Validation of the software tool

	Software modeling and coding guidelines (ISO 26262:2018, Part 6, Section 1)
	ISO 26262:2018, Part 6, Table 1: Topics to be covered by modeling and coding guidelines

	Software unit design and implementation (ISO 26262:2018, Part 6, Section 8)
	ISO 26262:2012, Part 6, Table 6: Design principles for software unit design and implementation

	Testing of the embedded software (ISO 26262:2018, Part 6, Section 9)
	ISO 26262:2012, Part 6, Table 7: Methods for software unit verification

	Testing of the embedded software (ISO 26262:2018, Part 6, Section 11)
	ISO 26262:2018 Table 13: Test environments for conducting the software testing
	ISO 26262:2018 Table 14: Methods for tests of the embedded software
	ISO 26262:2018 Table 15: Methods for deriving test cases for software unit testing

