
WHITE PAPER 

First Line of Defense: 
Developer Security Tools in the IDE



blackduck.com  |  2

Risk awareness
Implementing an effective risk awareness program is the first step to shifting security left and enabling developers to begin 
securing the software they create. There are several reasons why developers could be unaware of application security issues. 
These include the inconsistent nature of security education, disparity among developers’ experience, the proliferation of open 
source and third-party components, and the late stage at which traditional security teams discover vulnerabilities. Let’s break 
these down a little more.

Inconsistent security education 
Most university computer science programs offer few, if any, security courses, leaving developers to learn secure coding 
practices on the job or on their own. Security education in general entails gaining an awareness of risks, and gaining an 
awareness of more-secure alternatives to use instead of less-secure methods. Developers can only address code quality issues 
in code they are writing if they are aware that the code they wrote is insecure. And once they become aware of it, they need to 
know of more-secure methods to accomplish the same task or function within the parameters of the application, framework, 
language, and other technical restrictions. Likewise, in third-party software, developers need to be able to both recognize a 
security issue and either fix it or replace it with a more secure component.

Disparity among developers’ experience
As every business continues to become a software business, the need for developers grows. This has brought new developers 
into security roles despite scant security experience, and has increased the demand for developers who know a range of 
tools and methodologies. This wide difference in skill levels can pose a challenge for organizations that centralize security 
responsibilities within one team. 

One of the challenges of implementing resilient software security is that, historically, security has been owned 
and managed by security teams while its implementation has been owned and managed by development teams. 
Security teams detect, identify, and prioritize risks for remediation, a process they undertake late in the software 
development life cycle (SDLC), after developers have completed the build work. But with this approach, security 
issues found late in the SDLC pose a problem: either the code is sent back to developers to be fixed, which could 
mean pushing the release date back, or software is pushed out, despite known issues, to a repo or production, with 
the hope that the potential risk doesn’t incite a security incident. 

As software development and deployment methodologies evolved and got faster, security responsibilities began 
to “shift left”—be performed earlier in the SDLC—and involve security, operations, and infrastructure teams. At the 
same time, the tools each team used to detect and mitigate risks diverged, with only tangential connections via 
APIs and reports. This often complicated communication and collaboration across teams and introduced noise into 
DevSecOps initiatives. 

We all want to produce better and more secure software, and we want to do that faster than we ever have before. 
For developers, this means taking on more responsibility for security without sacrificing velocity, as well as learning 
new tools and processes that may have been prescribed by teams that are disconnected from the development 
process. By bringing security detection and remediation into the IDE and delivering that information to developers 
as they work, security-focused IDE plugins such as Black Duck Code Sight™ IDE Plug-in help build security into the 
code without sacrificing velocity. 

There are three essential factors that must be implemented into the SDLC and DevOps workflows to accomplish this.

• Risk awareness • Risk prioritization • Risk remediation

https://www.blackduck.com


blackduck.com  |  3

Proliferation of open source and third-party components
Increasingly, developers are leveraging third-party and open source components to 
accelerate development and benefit from the work of other developer communities. 
But these assets can pose a number of security issues, as they are created 
by developers who are subject to the same potential limitations as in-house 
development teams. In truth, using open source and third-party components means 
that developers are outsourcing aspects of application security and relegating their 
risk profile to the standards of another organization or developer. This obfuscates 
security risk awareness at the source code level, and that can often delay issue 
resolution or require a patchwork of code to be layered atop vulnerable components. 
These components also often entail adding dependencies—both known and 
transitive—into the built project. These dependencies are subject to the same 
security nuances. This is why there’s been such focus on software Bills of Materials 
(SBOMs) in recent years. A good SBOM is a critical risk awareness tool because it 
catalogs software assets and can help developers find affected code and artifacts if 
they are alerted to a newly discovered risk.

Late-stage security risk detection
As development and release methodologies evolve from waterfall, to agile, to 
DevOps and continuous integration / continuous delivery (CI/CD), security standards 
are undergoing similar changes. Postponing the discovery of security vulnerabilities 
until after assets have left the developer’s hands is a relic of earlier methodologies. 
Modern, more rapid software development workflows require faster and earlier 
security review to avoid missing shipping deadlines. Late-stage discoveries force 
developers to return to work they may have already moved on from. This means 
they have to interrupt their current workflow to fix code that may no longer be the 
focus of their task at hand. 

Risk prioritization
When security practitioners discuss prioritization, the fundamental elements 
include risk severity, exploitability, exposure to the public (e.g., commercial 
software, external server deployment), and patch availability. There are two primary 
complicating factors in risk prioritization: the diverse range of application security 
testing (AST) tools, and the complex and often subjective task of identifying the 
greatest return on investment (ROI) for remediation or mitigation efforts. These 
factors are also influenced by the inconsistent toolsets, risk tolerances, and 
workload availability of individuals across teams spanning development, testing, 
and production operations. Let’s examine these challenges more closely.

Contributor perspectives
Deciding which risks are most important to resolve can be difficult to determine 
because each stakeholder has their own perspectives on the matter. Assessing 
risk and prioritizing remediation can be subjective, and can put team members at 
odds with one another. Security teams often manage testing across hundreds or 
thousands of applications in their organizations, with each application containing 
potentially vulnerable components. Developers often focus on a portion of the 
software load that passes through security and are intimately familiar with the code, 
components, and structure that compose that set of projects. Operations teams 
take ownership of software assets in production environments, so they require 
clear communication with security and development teams to patch and replace 
vulnerable software affected by emerging threats.

Pro tip:
IDE plugins can detect code 
quality issues and open source 
vulnerabilities in projects as code 
is being written. Many even deliver 
remediation advice upon detection. 

https://www.blackduck.com


blackduck.com  |  4

Diverse AST toolsets
According to the Global State of DevSecOps report, the majority of organizations are 
dissatisfied with their AST tools. These tools are commonly focused on satisfying 
the requirements of security teams, with a secondary focus on development or 
DevOps teams—often via integrations and API support. Organizations experience 
challenges when teams implement disparate tools, configured for their specific 
risk tolerances and project requirements. Each tool’s scanners, analysis engines, 
reporting, and remediation capabilities vary, exacerbating the siloed contributor 
perspective.

Ultimately, fast-paced DevOps workflows cannot support compliance requirements 
and customer demands for consistent, resilient application security when teams 
and tools do not function in unison. Developers need the tools and insight to 
detect and prioritize risks as they write and build software, so they can prevent as 
many potential security risks as possible downstream. Risk prioritization may be 
inadvertently inconsistent, but if issues are remediated earlier in the SDLC, they 
won’t have the chance to be overlooked or undetected by downstream tools and 
contributors.

Risk remediation
After detecting code quality and security risks as early as possible in the SDLC, and 
prioritizing them based on relevant criteria (e.g., risk severity, exploit availability, 
application accessibility), developers bear the responsibility for remediation. 

Developers must navigate complex file structures and a huge amount of code to 
remediate an issue. An IDE-based security tool can simplify this step, as the tool 
highlights the at-risk file or links to the location of the issue. For code written in-
house, effective remediation is predicated on knowledge of secure coding practices. 
If, for example, a developer writes code that leaves software open to SQL injection, 
that developer must learn the secure way to write the same function in order to 
fix the issue. This is true for any insecure coding practice, spanning languages, 
frameworks, and IDEs.

Open source components and other third-party assets add a layer of complexity 
to remediation, effectively limiting an organization’s risk posture to the security 
preparedness of software vendors and community contributors. The owners and 
maintainers of vulnerable third-party assets should incorporate a fix into their 
deliverables, but they first need to be aware of the security risk. When this doesn’t 
happen, developers using these assets must either remediate the issue themselves 
or remove the vulnerable asset entirely. 

Sometimes a fix is available in the form of a newer, more-secure software version 
or an analogous component with stronger security. This greatly helps developers 
act on the risk insight they receive from security tools. Implementing a DevSecOps 
program with automated and integrated systems that are easy to use and that 
deliver diagnostic and remediation advice right to developers is the best way to 
secure code without slowing development and DevOps workflows. 

Pro tip:
IDE-based security plugins provide 
the most direct and frictionless 
way to catch issues early. They can 
highlight known vulnerabilities in 
open source components and their 
dependencies, and reveal code 
quality risks that create potentially 
exploitable weaknesses.

Pro tip:
To get a sense of how many 
code quality risks and security 
vulnerabilities developers can be 
responsible to fix, check out  
CWE.Mitre.org and CVE.org.

https://www.blackduck.com
https://www.blackduck.com/resources/analyst-reports/state-of-devsecops.html
https://cwe.mitre.org/
https://www.cve.org/


blackduck.com  |  5

The DevSecOps approach
DevSecOps expands the collaboration between development and operations teams and integrates security teams. DevSecOps 
requires a change in culture, process, and tools across these core functional teams and makes security a shared responsibility. 
Integrating automated systems into DevOps workflows and CI/CD pipelines enables developers to perform quick security tests 
as they code and get remediation information without leaving the IDE. This type of security-first approach to development is key 
to implementing a DevSecOps program in any organization.

Automating risk detection through IDE-based security plugins or AST integrations makes it easier for development teams to code 
securely without impeding velocity. Black Duck Code Sight, for example, is a developer-centric security plugin that performs code 
analysis and open source risk analysis, known as static application security testing and software composition analysis, right 
from the IDE where developers work. Using IDE-based security tools like Code Sight helps developers find and fix code quality 
issues and security risks quickly. This helps developers ship fewer security risks and improve the security risk posture of the 
organization as a whole. 

The resulting DevSecOps program is perhaps best evaluated by consistent software pipeline velocities and reduced time to 
remediation. Organizations at the leading edge often consider the reduced number of new security risks shipped to production 
as a metric for success, as it indicates an evolution of the security capabilities of development teams.

DevSecOps requires a concerted plan 
The first step to implementing a DevSecOps program is a conversation between development, security, and operations teams. 
Everyone should understand the role of each team in the process, and how each team measures or qualifies success at their 
corresponding touchpoints. They should also identify the tools and techniques used to assess and prioritize security risks, 
and define a path to a mutually beneficial improved state. Although certain teams may realize greater benefits, that should not 
interfere with the path forward that benefits the organization as a whole. 

A robust DevSecOps program does not limit itself to “shift left” security practices; rather, it strives for a “shift everywhere” 
approach to security for sustained security postures and compliance with regulatory standards. 

Companies should consider this a starting point for planning systems and controls, with the goal to exceed them as teams 
develop their security skills. Many organizations focused on elevating their standard for security undergo detailed assessments, 
such the Black Duck Maturity Action Plan (MAP). A MAP provides an actionable roadmap for security and development teams. 
Whether you want to move applications to the cloud, manage open source risks, improve developer security education, or build 
security into your SDLC or DevOps initiatives, a MAP outlines the steps to get you there.

https://www.blackduck.com


Black Duck® offers the most comprehensive, powerful, and trusted portfolio of 
application security solutions in the industry. We have an unmatched track record of 
helping organizations around the world secure their software quickly, integrate security 
efficiently in their development environments, and safely innovate with new technologies. 
As the recognized leaders, experts, and innovators in software security, Black Duck has 
everything you need to build trust in your software. Learn more at www.blackduck.com.

©2024 Black Duck Software, Inc. All rights reserved. Black Duck is a trademark of Black Duck Software, Inc. in the United States and other countries. All other names 
mentioned herein are trademarks or registered trademarks of their respective owners. September 2024

About Black Duck

blackduck.com  |  6

https://www.blackduck.com
https://www.blackduck.com

